Do You Miss Me?

Tom Ron, July 2023

Tom Ron

Engineering Manager with a soul of a data scientist

Occasionally writing on tomron.net

Mechanism of Missing Data

MCAR - Missing Completely At Random

MAR - Missing At Random

The fact that the data are missing is independent of the observed and unobserved data

The fact that the data are missing is systematically related to the observed but not the unobserved data

MNAR - Missing Not At Random

The fact that the data are missing is systematically related to the unobserved data

Terminology

Imputation
the process of replacing missing data with substituted values
<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 3 columns):
\# Column Non-Null Count Dtype
0 gender 10000 non-null object

1 weight 9554 non-null float64
2 height 9316 non-null float64
dtypes: float64(2), object(1)
memory usage: 234.5+ KB

df['weight'].plot(kind='hist')

Weight Histogram

df['weight'].fillna(df['weight'].mean())

And we can do the same thing with scikit-learn -
from sklearn.impute import SimpleImputer
simple_imputer = SimpleImputer(strategy='mean')
df['weight_average_simple'] = simple_imputer.fit_transform(df[['weight']])

Simplelmputer vs fillna

SimpleImputer

Limited filling options

Missing Indicator

https://tomron.net/2023/06/21/pandas-fillna-vs-scikit-learn-simpleimputer/

df['weight'].fillna(df['weight'].mean())

Weight Histogram - imputation with mean


```
index = df[df['weight'].isna()].index
mean = df['weight'].mean()
loc = df['weight'].std()
df['weight_normal'] = df['weight'].fillna(pd.Series(np.random.normal(mean,
loc, size=len(index)), index=index))
```

Weight Histogram - imputation with normal distribution

Weight Histogram by Gender

df.groupby(['gender', 'missing_weight']).size()

gender missing_weight
m
w

False
4947
True
53
w
False
True
393
dtype: int64

Weight Histogram by Gender

\#	Column	Non-Null Count	Dtype
0	gender	10000 non-null	object
1	weight	9554 non-null	float64
2	height	9316 non-null	float64
3	bp_diastolic	9689 non-null	float64
4	bp_systolic	9689 non-null	float64
	number_of_hairs	9022 non-null	float64
dtypes: float64(5), object(1) memory usage: 468.9+ KB			

msno.matrix(df.sample(250))

msno. heatmap(df)

KNN imputer

- Mean value of k nearest neighbors


```
from sklearn.impute import KNNImputer
knn_imputer = KNNImputer(n_neighbors=3)
knn_cols = ['weight', 'height', 'number_of_hairs',
'bp_diastolic', 'bp_systolic']
knn_df = pd.DataFrame(knn_imputer.fit_transform(df),
columns=knn_cols)
```


Iterative imputer

- Impute on values on round-robin fashion
- Model each feature as a function of other
- See more here and here
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
iterative_imputer = IterativeImputer()
knn_cols = ['weight', 'height', 'number_of_hairs', 'bp_diastolic', 'bp_systolic']
itr_df =
pd.DataFrame(iterative_imputer.fit_transform(df[knn_cols]), columns=knn_cols)

Summary

- Missing Data is a problem every data scientist and data analyst face
- Data can be missing due to many reasons and can be classified to 3 mechanisms - MCAR, MAR, MNAR
- Who can help you with that? Data Engineer, UX researcher, domain expert

Summary

- Python can help us gain better understanding about missing data and impute values

missingno

Thank you!

Slides and code are available in - here

